29 research outputs found

    Applications of Acoustic Wave Devices for Sensing in Liquid Environments

    Get PDF
    Acoustic wave devices such as thickness shear mode (TSM) resonators and shear horizontal surface acoustic wave (SH-SAW) devices can be utilized for characterizing physical properties of liquids and for chemical sensor applications. Basic device configurations are reviewed and the relationships between experimental observables (frequency shifts and attenuation) and physical properties of liquids are presented. Examples of physical property (density and viscosity) determination and also of chemical sensing are presented for a variety of liquid phase applications. Applications of TSMs and polymer-coated guided SH-SAWs for chemical sensing and uncoated SH-SAWs for ā€œelectronic tongueā€ applications are also discussed

    Combined X-ray diffraction and diffuse reflectance analysis of nanocrystalline mixed Sn(II) and Sn(IV) Oxide Powders

    Get PDF
    Nanocrystalline mixtures of Sn(II) and Sn(IV) oxide powders, potential gas sensor materials, are synthesized via a simple precipitation route using SnCl(2) as the precursor. Materials are characterized by powder X-ray diffraction, thermogravimetric analysis, UV-visible diffuse reflectance spectroscopy (DRS), and Fourier transform infrared spectroscopy. The ratio of Sn(II)/Sn(IV) in powders precipitated at room temperature, as well as the identity of the primary Sn(II) product (SnO or Sn(6)O(4)(OH)(4)), can be varied by adjusting aging time and washing procedures. The identity of the initial Sn(II) product influences the subsequent phase composition and degree of disorder in the tetragonal SnO(2) phase obtained following sintering in air. Analysis of the DRS absorption edge and long-wavelength (Urbach) absorption tail is used to determine the SnO(2) optical band gap and extent of disorder. SnO(2) obtained by heating the SnO/SnO(2) mixture at 600 or 800 degrees C has a smaller optical band gap and a broader Urbach tail than the analogous sample obtained from heating Sn(6)O(4)(OH)(4), indicating a more disordered material

    Anion Exchange Kinetics of Nanodimensional Layered Metal Hydroxides: Use of Isoconversional Analysis

    Get PDF
    Anion exchange reactions of nanodimensional layered metal hydroxide compounds are utilized to create materials with targeted physical and chemical properties and also as a means for controlled release of intercalated anions. The kinetics of this important class of reaction are generally characterized by model-based approaches. In this work, a different approach based on isothermal, isoconversional analysis was utilized to determine effective activation energies with respect to extent of reaction. Two different layered metal hydroxide materials were chosen for reaction with chloride anions, using a temperature range of 30āˆ’60 Ā°C. The concentrations of anions released into solution and the changes in polycrystalline solid phases were evaluated using model-based (Avrami-Erofeā€™ev nucleationāˆ’growth model) and model-free (integral isoconversional) methods. The results demonstrate the utility of the isoconversional approach for identifying when fitting to a single model is not appropriate, particularly for characterizing the temperature dependence of the reaction kinetics

    Removal of 2,4-dichlorophenoxyacetic Acid by Calcined Znā€“Alā€“Zr Layered Double Hydroxide

    Get PDF
    The adsorption equilibrium, kinetics, and thermodynamics of removal of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by a calcined Znā€“Al layered double hydroxide incorporated with Zr4+ were studied with respect to time, temperature, pH, and initial 2,4-D concentration. Zr4+ incorporation into the LDH was used to enhance 2,4-D uptake by creating higher positive charges and surface/layer modification of the adsorbent. The LDH was capable of removing up to 98% of 2,4-D from 5 to 400 ppm aqueous at adsorbent dosages of 500 and 5000 mg Lāˆ’1. The adsorption was described by a Langmuir-type isotherm. The percentage 2,4-D removed was directly proportional to the adsorbent dosage and was optimized with 8% Zr4+ ion content, relative to the total metals (Zr4+ + Al3+ + Zn2+). Selected mass transfer and kinetic models were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms of 2,4-D, and the kinetics followed a pseudo-second order kinetic model with an enthalpy, Ī”Hads of āˆ’27.7 Ā± 0.9 kJ molāˆ’1. Regeneration studies showed a 6% reduction in 2,4-D uptake capacity over six adsorptionā€“desorption cycles when exposed to an analyte concentration of 100 ppm

    Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Get PDF
    Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release.The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers.The orthoisomer showed a more sustained and complete release as compared to the other isomers

    The Effect of Boron-Containing Layered Hydroxy Salt (LHS) on the Thermal Stability and Degradation Kinetics of Poly (Methyl Methacrylate)

    Get PDF
    A boron-containing layered hydroxy salt (LHS), ZHTMDBB, was prepared and compounded with a highly flammable synthetic polymer, poly (methyl methacrylate) {PMMA}, via melt blending: the composite structure was intercalated with poor dispersion. The effect of this LHS on the flammability, thermal stability and degradation kinetics of PMMA was investigated via cone calorimetry and thermogravimetric analysis. The addition of 3-10% by mass of ZHTMDBB to PMMA resulted in significant reduction of peak heat release rate (22-48%) of the polymer and improvements in thermal stability were observed in both air and nitrogen. Effective activation energies for the degradation process were evaluated using Flynn-Wall-Ozawa, Friedman, and Kissinger methods. All three methods indicated that the additive increased the activation energies of the first step of the degradation process in both air and nitrogen. Activation energies of the second step were lowered in nitrogen but were not significantly affected in air

    Fire Retardancy of Melamine and Zinc Aluminum Layered Double Hydroxide in Poly(methyl Methacrylate)

    Get PDF
    The thermal and fire properties of PMMA modified with various loadings of melamine or zinc aluminum undecenoate LDH were evaluated using TGA, DTA and cone calorimetry. The additives were characterized by X-ray diffraction, TGA, FT-IR and elemental analysis. While the two additives are very effective with this polymer, a higher loading of melamine (30%) is required to reach a good reduction in PHRR (47%) relative to the pure polymer, while with the LDH, 10% loading is enough to obtain a similar reduction. The combinations of these additives in PMMA reveal that the time to PHRR and the amount of smoke produced are the key differences, with melamine increasing the first parameter and leading to less smoke production relative to LDH-rich PMMA systems at similar total additive loadings. Analysis of the residue shows that melamine is completely lost during combustion while the LDH forms ZnO and ZnAl2O4

    Comparative Study on the Flammability of Polyethylene Modified with Commercial Fire Retardants and a Zinc Aluminum Oleate Layered Double Hydroxide

    Get PDF
    Polyethylene (PE) was modified by the addition of a layered hydroxide of zinc aluminum oleate (ZnAl) and/or commercial fire retardants. Commercial additives included: melamine polyphosphate (MPP), ammonium polyphosphate (APP), triphenol phosphate (TPP), resorcinol diphosphate (RDP), decabromophenyl oxide (DECA) and antimony oxide (AO). The thermal stability and the combustion behaviors of the new composite polymeric materials are evaluated in TGA experiments and cone calorimetry. At 20% total additive loading, APP and LDH enhance the thermal stability of the PE composites and favor char formation. ZnAl leads to the best reduction in the peak of heat release rate (PHRR), 72%, while the combinations of PE with other additives give reductions in the range 20-40%. The combination of DECA and AO effectively increases the time to ignition and time to PHRR while LDH lowers these two Phosphate fire retardants parameters. APP and MPP on the other hand, do not affect the time to ignition, but they effectively increase the time to PHRR relative to the pristine polymer

    Characterization of Epoxy Resin (SU-8) Film Using Thickness-Shear Mode (TSM) Resonator under Various Conditions

    Get PDF
    Characterization of an epoxy resin film, commonly known as SU-8, is presented using thickness shear mode (TSM) quartz resonator. The impedance-admittance characteristics of the equivalent circuit models of the unperturbed and coated resonators are analyzed to extract the storage modulus and loss modulus (G\u27 and G\u27\u27). Those parameters are needed to establish SU-8 film as an effective wave-guiding layer in the implementation of guided shear-horizontal surface acoustic wave (SH-SAW) sensor platforms. Both cured and uncured polymer films are studied at the fundamental and third harmonic frequencies of the TSM resonators. The storage modulus (G\u27) and loss modulus (G\u27\u27) of the SU-8 film approach constant values of 1.66 Ɨ 1010 dyne/cm2 and 6.0 Ɨ 108 dyne/cm2, respectively, for relatively thicker films (\u3e20 Ī¼m) at a relatively low frequency of 9 MHz. The most accurate values for the extracted shear moduli G (G = G\u27 + jG\u27\u27) are obtained at high thickness where the viscoelastic contribution to the TSM response is substantial. The effect of temperature on the storage and loss moduli is determined for the range of āˆ’75 to 40 Ā°C. It is found that the polymer approaches a totally glassy state below āˆ’60 Ā°C. Exposure to water appears to follow Fickian diffusion behavior at short times and this exposure also results in changes to both G\u27 and G\u27\u27. However, stability is rapidly reached with exposure to water, indicating relatively lower water absorption, consistent with the extracted diffusion coefficient

    The Role of the Trivalent metal in an LDH: Synthesis, Characterization and Fire Properties of Thermally Stable PMMA/LDH Systems

    Get PDF
    Two layered double hydroxides (LDHs), calcium aluminum undecenoate (Ca3Al) and calcium iron undecenoate (Ca3Fe), have been prepared by the co-precipitation method. XRD analysis of these LDHs reveals that they are layered materials and FT-IR and TGA confirmed the presence of the undecenoate anions in the material produced. The PMMA composites were prepared by bulk polymerization and the samples were characterized by XRD, TEM, TGA and cone calorimetry. Both additives greatly enhance the thermal stability of PMMA, while the calcium aluminum LDH gives better results when the fire properties were examined using the cone calorimeter
    corecore